organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ya-Ming Wu,^a Chang-Chuan Dong,^b Shan Liu,^a Hong-Jun Zhu^a* and Yi-Zu Wu^c

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, ^bSynergetica Changzhou Ltd., Changzhou 213033, People's Republic of China, and ^cCollege of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.007 Å R factor = 0.084 wR factor = 0.189 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Fluorophenylboronic acid

The title compound, $C_6H_6BFO_2$, is a versatile building block in organic synthesis. In the crystal structure, intermolecular O- $H \cdots O$ hydrogen bonds link the molecules into dimers, which may be effective in the stabilization of the crystal structure.

Comment

The title compound, (I), is a versatile building block in organic synthesis and an important intermediate in the synthesis of active compounds in the agrochemical and pharmaceutical industries (Meudt *et al.*, 2002).

In the molecule of the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

As can be seen from the packing diagram (Fig. 2), intermolecular $O-H\cdots O$ hydrogen bonds (Table 2) link the molecules into dimers, which may be effective in the stabilization of the crystal structure. Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

Experimental

Compound (I) was prepared according to the reported procedure of Meudt *et al.* (2002). Single crystals suitable for X-ray diffraction were

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 25 August 2006 Accepted 29 August 2006 obtained by slow evaporation of an acetonitrile (25 ml) solution of (I) (1.0 g).

Z = 4

 $D_r = 1.434 \text{ Mg m}^{-3}$

1265 independent reflections

868 reflections with $I > 2\sigma(I)$

frequency: 120 min

intensity decay: none

 $w = 1/[\sigma^2(F_0^2) + (0.03P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^{-1}$

T = 294 (2) K

Block, white $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 26.0^{\circ}$ 3 standard reflections

+2P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Crystal data

 $\begin{array}{l} C_{6}H_{6}BFO_{2} \\ M_{r} = 139.92 \\ \text{Monoclinic, } P2_{1}/c \\ a = 5.7560 \ (12) \text{ Å} \\ b = 5.027 \ (1) \text{ Å} \\ c = 22.402 \ (5) \text{ Å} \\ \beta = 91.19 \ (3)^{\circ} \\ V = 648.1 \ (2) \text{ Å}^{3} \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.965, T_{\rm max} = 0.988$ 1265 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.189$ S = 0.971265 reflections 97 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{matrix} O1-H1\cdots O2^i\\ O2-H2\cdots O1^{ii} \end{matrix}$	0.85 (3) 0.86 (3)	2.06 (4) 2.08 (3)	2.796 (5) 2.831 (5)	144 (4) 145 (4)
6	. (!!)	1.1		

Symmetry codes: (i) -x, -y, -z; (ii) x, y + 1, z.

The H atoms of OH groups were located in difference syntheses and refined [O-H = 0.851 (19)-0.855 (19) Å, with $U_{iso}(H) = 1.2U_{eq}(O)]$. The remaining H atoms were positioned geometrically,

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

with C-H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center for Testing and Analysis, Nanjing University, for financial support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Enraf–Nonius (1985). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Meudt, A., Erbes, M. & Forstinger, K. (2002). US Patent No. 2002/0 161 230.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.